Received 4 November 2003 Accepted 13 November 2003

Online 22 November 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Clare Lee and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.006 \text{ Å}$ Disorder in main residue R factor = 0.045 wR factor = 0.112 Data-to-parameter ratio = 24.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(benzylammonium) hydrogenarsenate monohydrate

The title compound, $(C_6H_5CH_2NH_3)_2[HAsO_4]\cdot H_2O$, contains a network of benzylammonium cations, hydrogenarsenate anions $[d_{av}(As-O) = 1.689 (2) \text{ Å}]$ and water molecules. The crystal packing involves $N-H\cdots O [d_{av}(H\cdots O) = 1.91 \text{ Å},$ $\theta_{av}(N-H\cdots O) = 167^{\circ}$ and $d_{av}(N\cdots O) = 2.794 (3) \text{ Å}]$ and O- $H\cdots O [d_{av}(H\cdots O) = 1.83 \text{ Å}, \theta_{av}(O-H\cdots O) = 173^{\circ}$ and $d_{av}(O\cdots O) = 2.729 (3) \text{ Å}]$ hydrogen bonds, resulting in a layered structure.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of (protonated) amine phosphates (Demir *et al.*, 2003), phosphites (Harrison, 2003), selenites (Ritchie & Harrison, 2003) and arsenates (Lee & Harrison, 2003).

The crystal structure of (I) contains two unique $C_6H_5CH_2NH_3^+$ benzylammonium cations, one unique $[HAsO_4]^{2-}$ hydrogenarsenate anion and one unique water molecule. The phenyl ring of the N2 benzylammonium species is disordered over two orientations twisted approximately about the $C8-C9a/b\cdots C12a/b$ axis [dihedral angle between the ring planes = 29.6°; relative populations = 0.597 (7):0.403 (7) for the C9-C14 atoms with suffixes *a* and *b*, respectively]. Otherwise, the geometrical parameters for the organic species are not significantly different from those of the same cation in the non-linear optical material benzyl-

The asymmetric unit of (I) (50% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines. Only one orientation of the disordered phenyl ring of the N2-cation is shown.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Detail of a hydrogen-bonded hydrogenarsenate/water chain in (I). Colour key: $[HAsO_4]^{2-}$ tetrahedra green, O atoms rose and H atoms grey. The $H \cdots O$ portions of the hydrogen bonds are highlighted in yellow. Symmetry labels as in Table 2; additionally, (v) 1 + x, y, z; (vi) 1 + x, 1 + y, z.

[100] projection of (I). Colour key as in Fig. 2; additionally, C atoms blue and N atoms green. C-H H atoms have been omitted for clarity. The $H \cdots O$ portions of the hydrogen bonds are highlighted in yellow.

ammonium dihydrogenphosphate, (C₆H₅CH₂NH₃)[H₂PO₄] (Aakeroy et al., 1989).

The $[HAsO_4]^{2-}$ hydrogenarsenate group in (I) shows its standard (Lee & Harrison, 2003) tetrahedral geometry $[d_{av}(As-O) = 1.689 (2) \text{ Å and } \theta_{av}(O-As-O) = 109.4 (1)^{\circ}],$ with the protonated As-O4 vertex showing its expected lengthening relative to the other As-O bonds.

As well as electrostatic attractions, the component species in (I) interact by means of a network of $N-H\cdots O$ and O- $H \cdots O$ links (Table 2). The $[HAsO_4]^{2-}$ units and the water molecule (atom O5) are linked into a polymeric chain in the [010] direction by hydrogen bonds (Fig. 2). Inversion symmetry generates linked pairs of $[HAsO_4]^{2-}$ units (by way of two O4-H1···O3 bonds) which, in turn, are bridged by pairs of water molecules. The hydrogen-bonding scheme in propane-1,2-diammonium hydrogenarsenate monohydrate (Lee & Harrison, 2003) led to a quite different arrangement of $[HAsO_4]^{2-}$ and H_2O units. In 4-carboxyanilinium dihydrogenarsenate monohydrate (Tordjman et al., 1988), hydrogen bonding between the $[H_2AsO_4]^-$ and H_2O species results in a sheet structure, but otherwise structural data are lacking for these systems.

The organic species interact with the hydrogenarsenate/ water chains by way of N-H···O-As hydrogen bonds (Table 2). All six of the NH_3^+ H atoms are involved in these

links $[d_{av}(H \cdots O) = 1.91 \text{ Å}, \theta_{av}(N - H \cdots O) = 167^{\circ}$ and $d_{av}(N \cdots O) = 2.794$ (3) Å]. This results in (001) hydrogenarsenate/water/ammonium layers sandwiched between the benzyl moieties (Fig. 3) which, in turn, interact by way of van der Waals forces. A PLATON (Spek, 2003) analysis of (I) indicated that the minimum separation between phenyl ring centroids is 4.06 Å; therefore, any π - π stacking interactions in (I) are extremely weak.

Experimental

4 ml of a 1 M benzylamine aqueous solution was added to 8 ml of a 0.5 M H₃AsO₄ aqueous solution, resulting in a brown solution. A mass of plate-shaped slightly translucent crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$(C_7H_{10}N)_2[HAsO_4] \cdot H_2O$	Z = 2
M = 374.26	D = 1.483 Mg m ⁻³
$\frac{M_r = 374.20}{\text{Triclinic, } P1}$	$D_x = 1.465$ Mg m Mo $K\alpha$ radiation
a = 6.4400 (2) A	Cell parameters from 24 435
b = 8.9128 (3) Å	reflections
c = 14.9957 (5) Å	$\theta = 2.9-27.5^{\circ}$
$\alpha = 99.7048 (11)^{\circ}$	$\mu = 2.05 \text{ mm}^{-1}$
$\beta = 93.1574 \ (12)^{\circ}$	T = 120 (2) K
$\gamma = 97.776 (18)^{\circ}$ V = 837.93 (5) Å ³	$0.35 \times 0.12 \times 0.03 \text{ mm}$

3846 independent reflections

 $R_{\rm int} = 0.122$ $\theta_{\rm max} = 27.5^{\circ}$

 $h = -8 \rightarrow 8$

 $k = -11 \rightarrow 11$

 $l = -19 \rightarrow 19$

3538 reflections with $I > 2\sigma(I)$

Data collection

```
Enraf-Nonius KappaCCD
  diffractometer
\omega and \varphi scans
Absorption correction: multi-scan
  (SORTAV; Blessing, 1995)
  T_{\min} = 0.534, \ T_{\max} = 0.941
18 359 measured reflections
```

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0281P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 2.1999P]
$wR(F^2) = 0.112$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
3846 reflections	$\Delta \rho_{\rm max} = 1.39 \ {\rm e} \ {\rm \AA}^{-3}$
158 parameters	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.021 (2)

Table 1

Selected geometric parameters (Å).

As1-O1	1.666 (2)	As1-O3	1.681 (2)
As1-O2	1.675 (2)	As1-O4	1.732 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O4−H1···O3 ⁱ	0.89	1.74	2.632 (3)	173
$N1 - H4 \cdot \cdot \cdot O2^{ii}$	0.91	1.94	2.830 (3)	166
$N1 - H5 \cdots O2^{iii}$	0.91	1.99	2.843 (3)	155
$N1 - H6 \cdot \cdot \cdot O1$	0.91	1.80	2.704 (3)	174
$N2-H7\cdots O1^{iv}$	0.91	1.86	2.731 (3)	161
$N2-H8\cdots O5$	0.91	1.92	2.823 (3)	174
$N2 - H9 \cdot \cdot \cdot O3$	0.91	1.94	2.835 (3)	169
O5−H2···O3 ⁱⁱⁱ	0.96	1.78	2.731 (3)	171
$O5-H3\cdots O2^{ii}$	0.85	1.98	2.825 (2)	176

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 1 - z; (iii) x - 1, y, z; (iv) 1 - x, 1 - y, 1 - z.

The C atoms forming the two orientations of the disordered phenyl group (atoms C9*a*-C14*a* and C9*b*-C14*b*) were constrained to lie at the vertices of regular hexagons, with d(C-C) = 1.39 Å, and were refined isotropically. The O-H H atoms were found in difference maps and refined as riding, starting from these positions. The H atoms bonded to C and N atoms were placed in calculated positions [d(C-H) = 0.95-0.99 Å and d(N-H) = 0.91 Å] and refined as riding, allowing free rotation of the rigid $R-NH_3$ groups about the R-N bonds. The constraint $U_{iso}(H) = 1.2U_{eq}$ (parent atom) was applied in all cases. The highest difference peak is 0.54 Å from C12*b* and the deepest difference hole is 0.79 Å from As1.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*, and *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *ATOMS* (Shape Software, 1999); software used to prepare material for publication: *SHELXL*97. We thank the EPSRC UK National Crystallography Service (University of Southampton) for data collection.

References

- Aakeroy, C. B., Hitchcock, P. B., Moyle, B. D., Seddon, K. R. (1989). J. Chem. Soc. Chem. Commun. pp. 1856–1859.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, 0907-0909.
- Enraf-Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harrison, W. T. A. (2003). Acta Cryst. E59, o1267-o1269.
- Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739-m741.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ritchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, 01296-01298.
- Shape Software (1999). *ATOMS*. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tordjman, I., Masse, R. & Guitel, J. C. (1988). Acta Cryst. C44, 2057-2059.